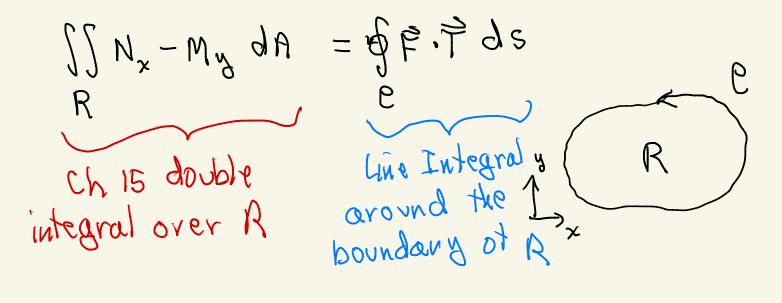
§16.4 Green's Theorem

Green's Theorem is what the Divergence Thm and Stokes Theorem both reduce to when you restrict from the real world of $(x, y, z) \in \mathbb{R}^3$ to the plane $(x, y) \in \mathbb{R}^3$ Statement of Green's Theorem. Let $\vec{F} = (M(x, y), N(x, y))$ be a vector field in the plane $(x, y) \in \mathbb{R}^3$, and let C denote a positively oriented closed curve C. Then



 (\mathbf{l})

· Note that this says that the integral of derivatives of F over a z-dimensional region R reduces to an integral of undifferentiate components around the 1-dimensional boundary A generalization of FTC $\int f'(x) dx = f(b) - f(a)$ • Note that $N_x - M_y = CualF.h$ if we extend \vec{F} to R^3 by making P = O. $\vec{F} = (M(x, y), N(x, y), O)$ $\begin{array}{c} \text{Curl} \widehat{F} = \left| \begin{array}{c} \widehat{v} & \widehat{z} & \widehat{h} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ M & N & P \end{array} \right| = \begin{array}{c} \widehat{v} \left(P_{y} \cdot N_{z} \right) - \frac{1}{2} \left(M_{z} \cdot P_{x} \right) \\ + h \left(N_{x} - M_{y} \right) \\ + h \left(N_{x} - M_{y} \right) \end{array} \right)$ $= (N_x - M_y) k$ Thus: Nx-My = CurlF. Put into Green's Thm

Conclude: Green's Thm is just Stoker Thm (3) for vector fields & curves in xy-plane Green's Thm is usually written with the line integral written as 1-form Mdx+Ndy

$$\frac{\text{Recall}}{\text{Pecall}}: \oint \vec{F} \cdot \vec{\nabla} \, dt = \int_{\mathcal{F}} \vec{F} \cdot \vec{\nabla} \, dt = \int_{\mathcal{F}} \vec{F} \cdot d\vec{r} \quad d\vec{r} = \vec{\nabla} \, dt = \int_{\mathcal{F}} \vec{F} \cdot d\vec{r} \quad d\vec{r} = \vec{\nabla} \, dt = \int_{\mathcal{F}} \vec{F} \cdot d\vec{r} \cdot (dx, dy) \quad d\vec{r} = (dx, dy) = \int_{\mathcal{F}} \vec{M} \, dx + N \, dy$$

The standard way of writing Green's Thm is:

• We can also convert Green's Theorem into (*)
the form of the Divergence Theorem -
G wen
$$\vec{F} = (M, N)$$
 _ rotats
 $\vec{F} = (T_x, T_y)$
Define $\vec{F}_1 = (N, -M)$ $q_0^\circ clockwise$
 $\vec{F} \cdot \vec{T} = (M, N) \cdot (T_x, T_y) = MT_x + NT_y$
 $\vec{F} \cdot \vec{T}_1 = (N_3 - M) \cdot (T_8, -T_x) = NT_8 + MT_x$
 $\vec{F}_1 \cdot \vec{T}_1 = (N_3 - M) \cdot (T_8, -T_x) = NT_8 + MT_x$
 $\vec{T}_1 = \vec{n} = outer nov mal$
 $Also : N_x - M_y = Div (N_3 - M) = Div \vec{F}_1$
 s_0
 $SlN_x - M_y dN = gMdx + Ndy \iff JJ Div \vec{F}_1 dN = g\vec{F}_1 \cdot \vec{n} ds$
 $R = R$
 $\vec{F} = (M, N)$
 $\vec{F} = (N, -M)$
Conclude: Green's the written in terms of \vec{F}
becomes the Divergence Thm when written in terms of \vec{F}_1

Conclude: There are three equivalent forms of Green's Theorem. () $\iint N_x - M_y dA = \oint Mdx + Ndy$ (Greens) R () $\iint CurlF \cdot F dS = \oint F \cdot F dS$ (Stokes)

(3)
$$\int \int D_{iv} \vec{F}_{i} dR = \oint \vec{F}_{i} \cdot \vec{n} ds$$
 (Divergence)
R

Since \vec{F}_{\perp} can be any vector field, it must be true for \vec{F} as well g (3) SSDIVE dA = $\oint_{C} \vec{F} \cdot \vec{n} ds$ R $\vec{R} = Outer normal$

Example @ Consider Green's Theorem when
$$\vec{F}$$

is defined in the annulus betw two
curves $C_1 & C_2$. We have
drawn two circles, but any
two simple closed curves (sci)
one inside the other works.
Show: Green's Theorem applies in the form
 $J = N_x - M_y dA = g \vec{F} \cdot \vec{F} ds - g \vec{F} \cdot \vec{F} dc$
R
Soln. Draw in the two curves $+ T & -\vec{F} \cdot \vec{F} dc$
R
Soln. Draw in the two curves $+ T & -\vec{F} \cdot \vec{F} dc$
Then starting at A, $C = C_1 + T - C_2 - T$ is a
scc inside of which $\vec{F} = (M, N)$ is defined.
Thus Green's Theorem applies to C:
 $J = N_x - M_y dA = \int \vec{F} \cdot \vec{F} ds = \int \vec{F} \cdot \vec{F} ds$
R
 $= \int \vec{F} \cdot \vec{F} ds = \int \vec{F} \cdot \vec{F} ds$
 $R = C_1 + T - C_2 - T$ is a
scc inside of which $\vec{F} = (M, N)$ is defined.
Thus Green's Theorem applies to C:
 $J = N_x - M_y dA = \int \vec{F} \cdot \vec{F} ds = \int \vec{F} \cdot \vec{F} ds$
 $R = C_1 + T - C_2 - T$

Example 3: Use Example 2 to show (1)
that if Curl F = 0 in D =
$$\{(x, y): (x, y) \neq 0\}$$
 = \mathbb{R}^{3} is of
then $\Re \notin : \overrightarrow{T} ds = \Im \notin : \overrightarrow{T} ds$ for any two
C₁ C₂
positively oriented curves C₁, C₂ which
go around (0,0) exactly once.
Solution: Since D is not simply connected
we cannot conclude from Curl F = 0 that
 \overrightarrow{F} is conservative, $\overrightarrow{F} = \nabla F$, or that the line
integral $\oint \overrightarrow{F} \cdot \overrightarrow{T} ds$ around closed curves = 0.
Alternatively, apply Green's Theorem in Handric
between C₁ & C₂:
 P_1 Curl F. $\overrightarrow{T} dA = \oint \overrightarrow{F} \cdot \overrightarrow{T} ds - \oint \overrightarrow{F} \cdot \overrightarrow{T} ds$
 R N_x-M_y C_1 C_2 C_2 C_2 C_3 C_4 C_5 C_5

ſ